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Abstract

Person re-identification (ReID) is an important task in

video surveillance and has various applications. It is non-

trivial due to complex background clutters, varying illu-

mination conditions, and uncontrollable camera settings.

Moreover, the person body misalignment caused by detec-

tors or pose variations is sometimes too severe for feature

matching across images. In this study, we propose a novel

Convolutional Neural Network (CNN), called Spindle Net,

based on human body region guided multi-stage feature de-

composition and tree-structured competitive feature fusion.

It is the first time human body structure information is con-

sidered in a CNN framework to facilitate feature learning.

The proposed Spindle Net brings unique advantages: 1) it

separately captures semantic features from different body

regions thus the macro- and micro-body features can be well

aligned across images, 2) the learned region features from

different semantic regions are merged with a competitive

scheme and discriminative features can be well preserved.

State of the art performance can be achieved on multiple

datasets by large margins. We further demonstrate the ro-

bustness and effectiveness of the proposed Spindle Net on

our proposed dataset SenseReID without fine-tuning. 1

1. Introduction

Person re-identification (ReID) aims at associating per-

son images across cameras and temporal periods. Given one

query image of one specific person, a person ReID system is

expected to provide all the images of the same person from

a large gallery database.

It is of great security interest and can be used for various

surveillance applications. For example, when a child gets

lost in a busy street, the ReID system can automatically

1H. Zhao and M. Tian share equal contribution. Source code and

dataset can be found from https://github.com/yokattame/SpindleNet.
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Figure 1. Challenges of person ReID. (a-b) Body region alignment

across images. With human landmark information, the body re-

gions shown in the blue boxes can be well aligned across images.

However, without such information, directly matching based on

location may results in ambiguities (the red boxes). (c) Detail in-

formation. With the local region features extracted from the blue

boxes, detailed information can be captured and the two persons

can be easily distinguished, even though their overall appearance

are quite similar. (d) Occlusion. The lower-body region of the

right image is occluded and the influence of the corresponding fea-

tures should be weakened. All the examples are selected from the

Market-1501 dataset [33].

search all the surveillance videos captured from nearby

cameras and locate this child immediately. If an accident

can be captured by one surveillance camera, all the wit-

nesses of this accident can also be successfully tracked and

located with a person ReID system, which can help the po-

lice find out more information of the accident and a lot of

manpower can be saved.

Although the person ReID problem has been studied for

years, it is still quite challenging. Firstly, human body re-

gions cannot be well aligned across images. Two detection

bounding boxes of the same person are shown in Fig. 1

(a), and the right box is not accurate. The head-shoulder

region (blue box) of the left image is mis-aligned with the

background region (red box) of the right image. The CNN
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feature maps of these two regions should be quite different

and cannot be directly compared. Even when the bounding

boxes are accurate, the body region alignment is still quite

challenging due to the large variations of human poses. An

shown in Fig. 1 (b), the right leg region of the left image

(blue box) is mis-aligned with the left leg region (red box)

in the right image, where the black bag cannot be observed.

In most existing methods, features are extracted from the

whole image [13, 29] or manually designed horizontal win-

dows [14], thus the features cannot be well aligned and are

not robust to detection errors or human pose variances. In

our ReID pipeline, human landmark information is used,

and body regions are obtained from a body region proposal

network (RPN). Our ReID features can then be extracted

from the seven body regions through a multi-stage ROI

pooling pipeline. In this way, features of different body re-

gions can be well aligned across images. As shown in Fig.

1, based on the body region information, the head-shoulder

regions (blue boxes) in (a) and the right leg regions (blue

boxes) in (b) can be well aligned, and their region features

can be directly compared without ambiguity.

Secondly, some detail information is very important to

discriminate different individuals. As shown in Fig. 1 (c),

the general appearances of the two persons are quite simi-

lar. It is quite difficult to distinguish them if not focusing

on the head region. However, most existing ReID methods

adopt global features on the whole image [13, 29] and are

very difficult to capture such detailed information. In our

approach, with the region features, a lot of detail informa-

tion can be better represented, which should be quite helpful

for identifying individuals with slight differences.

Lastly, occlusion is another main challenge. Some body

parts may be occluded in some images which makes the

association process more difficult. How to separate the oc-

cluded features from the good ones is also very important

for person ReID. As shown in Fig. 1 (d), the lower-body re-

gion of the right image is occluded by one white object, thus

the feature importance of this region should be weakened in

the feature comparison process.

However, no feature selection and filtering strategy is

adopted in most existing ReID methods and all feature com-

ponents are regarded equally useful. Actually, different

body regions should have different importance when used

for identifying persons. In order to make better use of the

region features, a tree-structured feature fusion strategy is

adopted in our approach instead of directly concatenating

the region features together. Regions features of different

semantic levels are merged separately in different stages.

Micro features are merged in early stages and macro ones

are merged later. Moreover, a competitive strategy is also

used in the feature fusion process. With such strategy, good

features can win the competition and thus can be preserved.

Compared with existing ReID approaches, our method

can achieve the state-of-the-art performance on most stan-

dard datasets with standard CMC evaluation metric. For ex-

ample, our model can achieve an Top-1 accuracy of 76.9%
on the Market-1501 [33] dataset, 11.0% higher than the the

best result (65.9%) in literature [25]. In order to test the

generalization ability of the learned model, we propose a

new dataset (SenseReID) for testing purpose only. It is cap-

tured from real surveillance cameras and the person bound-

ing boxes are obtained from state-of-the-art detection algo-

rithm [20]. The proposed SenseReID dataset contains 1717

identities in total and our model can achieve much better

performance compared with recent ReID approaches.

The contribution of this work can be summarized as the

following three-folds. 1) It is the first time human body

structure information is considered in a ReID pipeline. It

can help align body region features across images and local

detail information can be better described. 2) The Spin-

dle Net is designed for the ReID task. Features of different

body regions are first extracted by a multi-stage ROI pool-

ing framework, and features of different semantic levels are

pooled out separately at different stages. Then the regions

features of different semantic levels are merged by a tree-

structured fusion network with a competitive strategy. 3)

A real surveillance ReID dataset, i.e. SenseReID, is pro-

posed for performance evaluation purpose only. Our pro-

posed method can achieve state of the art performance on

the proposed dataset and multiple standard datasets.

2. Related Work

Most ReID pipelines are composed of two main steps,

feature learning and metric learning. As for the feature

learning step, traditional features [5, 6, 12, 14, 17, 21, 33]

are widely used in existing pipelines. For example, an ex-

plicit polynomial kernel feature map is used to characterize

the similarity information of all patch pairs between two

images [6]. Liao et al. [14] proposed an effective feature

representation called Local Maximal Occurrence (LOMO).

With the great success of CNN features, a lot of recent ReID

approaches [7, 13, 22, 24, 25, 28, 29] are designed based on

CNN structure. For example, Li et al. [13] adopted a filter

pairing neural network (FPNN) for person ReID. Cheng et

al. [7] introduced a multi-channel CNN to learn body fea-

tures from the input image. In [29], a pipeline is devel-

oped to learn generic feature representations from multiple

domains and domain guided dropout is adopted to discard

useless neurons for one specific domain. However, all the

CNN features used in previous literature are extracted from

the whole image or manually designed horizontal windows.

Such features cannot be well aligned across images and can-

not focus on each body part accurately. As introduced in

Section 1, the accurate body region features should be very

important to distinguish each individual.

As for the metric learning step, Liao et al. [14] pro-
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Figure 2. Illustration of the Region Proposal Network. (a) One

sample image and the fourteen body joints. (b) The fourteen body

joints are assigned to seven sets. (c) The seven body sub-regions

proposed by the RPN from the corresponding body joint sets.

posed a subspace based metric learning method called

Cross-view Quadratic Discriminant Analysis (XQDA). In

[11], Jose et al. introduced a metric learning formula-

tion called Weighted Approximate Rank Component Anal-

ysis (WARCA). A logistic metric learning algorithm is

developed by Liao et al. [15] with the PSD constraint

and an asymmetric sample weighting strategy. Xiong et

al. [31] proposed the four kernel-based distance learning ap-

proaches. Cheng et al. [7] proposed an improved triplet loss

function that requires the intra-class feature distances to be

less than the inter-class ones and a pre-defined threshold. In

our paper, we mainly target on the feature learning step and

Softmax classification loss is directly adopted for the met-

ric learning step. Performance might be further improved if

adopting advanced metric terms.

In recent years, the video based ReID problem is pro-

posed and much work has been conducted on this field

[4, 8, 18, 27]. In a video based ReID problem, sequential

data is used instead of images. In this work, we only target

on the image based ReID problem.

3. Body Region Proposal Network

As introduced in Fig. 1 (a-c), human landmark infor-

mation can help align body regions across images and lo-

cal details can be better described by the region features.

Therefore, human body region information is included in

the proposed ReID pipeline and the Region Proposal Net-

work (RPN) is used to extract the body regions. Given an

input image, the RPN generates seven rectangle region pro-

posals representing seven sub-regions of the person body

in the image, including the head-shoulder region, the up-

per body region, the lower body region, two arm regions,

and two leg regions. The RPN contains two main steps, i.e.

body joint localization and body region generation.

The first step of RPN is to locate the fourteen human

body joints from one input image. A fully convolutional

architecture is adopted, which takes the human image as

input and computes one response map Fi ∈ R
X×Y (i ∈

1, ..., 14) for each of the fourteen body joints. X and Y are

the horizontal and vertical dimensions of the feature maps.

Inspired by the Convolutional Pose Machines (CPM)

[26], we employ a sequential framework to generate these

response maps in a coarse-to-fine manner. In each stage, a

convolutional network is used to extract image features and

then combine the response maps from the previous stage,

to produce increasingly refined estimations for body joint

locations. However, the model in CPM [26] is computa-

tional expensive. Three modifications are made to reduce

model complexity yet produce high quality body joint re-

sponse maps.

• Early convolution layers are shared among different

stages in our framework to extract the image features.

• The pooling layers are replaced by convolution layers

with stride 2 to reduce the feature map sizes.

• The input image size, the number of framework stages

and the channel numbers of convolution layers are all

reduced for fast computation.

The detailed structure and parameters of the RPN can be

found in the supplementary material. With the feature maps,

the fourteen body joints can be located by finding the coor-

dinates with the maximum feature values.

Pi = [xi, yi] = arg max
x∈[1,X],y∈[1,Y ]

Fi(x, y) (1)

An example of the located fourteen body joints are visual-

ized in Fig. 2 (a).

The second step of RPN is to obtain seven body sub-

regions, including three macro sub-regions (head-shoulder,

upper body, lower body) and four micro sub-regions (two

arms, two legs) based on the body joint locations Pi.

As shown in Fig. 2 (b), the 14 located body joints

are assigned to three macro sets SA
1 = [1, 2, 3, 4],

SA
2 = [3, 4, 5, 6, 7, 8, 9, 10], SA

3 = [9, 10, 11, 12, 13, 14]
and four micro sets SB

1 = [3, 5, 6], SB
2 = [4, 7, 8],

SB
3 = [9, 11, 12], SB

4 = [10, 13, 14] according to the

index numbers. For each of the body joint set S ∈
{SA

1 ,SA
2 ,SA

3 ,SB
1 ,SB

2 ,SB
3 ,SB

4 }, the corresponding sub-

region bounding box B ∈ {BA
1 ,B

A
2 ,B

A
3 ,B

B
1 ,BB

2 ,BB
3 ,BB

4 }
can be obtained based on the location coordinates of the all

body joints in each macro/micro set.

B = [xmin, xmax, ymin, ymax]

= [min
i∈S

(xi),max
i∈S

(xi),min
i∈S

(yi),max
i∈S

(yi)] (2)

An example of the proposed seven body sub-regions are vi-

sualized in Fig. 2 (c).
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Figure 3. Flowchart of the proposed Spindle Net, including the Feature Extraction Net (FEN) and the Feature Fusion Net (FFN).

To train the RPN, the MPII human pose dataset [2] is

used which covers various human poses. The target re-

sponse map is generated as a Gaussian kernel around the

ground truth body joint locations. The loss function at the

output of each stage is defined as the L2 distance between

the estimated and the target response maps.

4. Body Region Guided Spindle Net

In this section, the proposed Spindle Net is introduced in

detail which contains two main components, i.e. the Feature

Extraction Network (FEN), and the Feature Fusion Network

(FFN). The general flowchart of Spindle Net is shown in

Fig. 3. The FEN takes the person image together with the

region proposals as input and computes one global feature

vector of the full image and seven sub-region feature vec-

tors corresponding to the seven proposed body sub-regions.

With the FFN, a final feature vector can be computed by

merging the full image feature vector and the sub-region

feature vectors together. The final feature vector can be used

to distinguish different persons. More details of the two

components are introduced in Sections 4.1 and 4.2. Train-

ing details are introduced in Section 4.3.

4.1. Feature Extraction Network (FEN)

With the FEN, one 256-dimensional feature vector can

be extracted from each of the eight regions, including a full

body region, and seven sub-regions proposed by the RPN,

corresponding to three macro sub-regions and four micro

sub-regions. The FEN structure is shown in the left part of

Fig. 3, which contains three convolution stages (FEN-C1,

FEN-C2, FEN-C3) and two ROI pooling stages (FEN-P1,

FEN-P2). The seven sub-regions are of different seman-

tic levels. Therefore, the sub-region features are cropped

from the full body feature maps at different stages, i.e. the

three macro features are pooled out after the first convolu-

tion stage (FEN-C1) and the four micro features are pooled

out after the second convolution stage (FEN-C2).

In FEN-C1, the input image is resized to 96×96 and con-

volved by three convolution layers and one inception mod-

ule [23]. The output feature map of FEN-C1 is denoted as

FC1
0 with spatial size 24 × 24. In FEN-P1, three feature

maps FP1
i (i = 1, 2, 3) are pooled out from FC1

0 based on

the three macro sub-regions proposed by the RPN. The out-

put size of FEN-P1 is 24 × 24. The three pooled feature

maps FP1
i (i = 1, 2, 3) are used as input of FEN-C2 to-

gether with FC1
0 . In FEN-C2, four input feature maps pass

through one inception module and output four output fea-

ture maps FC2
i (i = 0, 1, 2, 3) of spatial size 12×12. These

four output feature maps correspond to the full image region

and three macro sub-regions. Afterwards, in FEN-P2, four

feature maps FP2
i (i = 4, 5, 6, 7) are pooled out from the

full image feature map FC2
0 based on the four micro body

sub-regions proposed by the RPN. The output size of FEN-

P2 is 12 × 12. Together with FC2
i (i = 0, 1, 2, 3), the four

pooled feature maps FP2
i (i = 4, 5, 6, 7) are also used as

input of the last convolution stage, FEN-C3. In FEN-C3,
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(a) (d)(c)(b) (e) (f)

D = 4.52 D = 1.03 D = 0.11 D = 0.31

Figure 4. Two examples to demonstrate the effectiveness of the

proposed sub-region features. (a) Two images of the same person.

(b) Corresponding feature maps after FEN-C1. (c) Feature maps

after FEN-P1. (D) Two similar persons. (b) Corresponding feature

maps after FEN-C1. (c) Feature maps after FEN-P1. The average

L2 distances between feature maps are also listed.

each of the input feature maps first passes one inception

module and the spacial dimensions are reduced to 6 × 6.

Afterwards, one global pooling layer and one inner prod-

uct layer are adopted to transform the inception result to a

256-dimensional feature vector. The output of FEN-C3 are

eight 256-dimensional feature vectors, corresponding to the

full image region, three macro body sub-regions, and four

micro body sub-regions.

Two examples are shown in Fig. 4 to demonstrate the ef-

fectiveness of the proposed body sub-region features. In the

first example, two images of the same person and the cor-

responding feature maps after FEN-C1 are shown in Fig.

4 (a-b). Due to the mis-alignment of the body regions, the

feature maps in Fig. 4 (b) are quite different and the average

L2 distance of the two feature maps is D = 4.52. However,

after FEN-P1, the pooled feature maps of the head-shoulder

region (shown in Fig. 4 (c)) can be well aligned and the

average distance is reduced to D = 1.03. It means that

the pooled sub-region features can help better identify this

individual. Another example is shown in Fig. 4 (d-f), the

feature maps of two different persons shown in Fig. 4 (e)

are quite similar. It is quite difficult to distinguish the two

persons based on the feature maps of the full image. How-

ever, if we focus on the head-shoulder region (Fig. 4 (f)),

the differences can be much more obvious.

4.2. Feature Fusion Network (FFN)

In the FFN, the eight feature vectors are combined to-

gether to generate one compact 256 dimensional feature

vector that can well represent the whole image. A fusion

unit is proposed for the feature fusion process, which takes

two or more feature vectors of the same size as input and

outputs one merged feature vector. The structure of FFN is

shown in the right part of Fig. 3, and each fusion unit is

represented by one green block.

25.4%

MAX

46.1% 28.5%

(a)
(e)

(d)

(c)

(b)

Figure 5. Illustration of feature fusion. Feature entries are sorted

for better visualization. (a) Input image. (b-d) Three input feature

vectors of the body fusion unit. The features of the head-shoulder

region, the upper body region, and lower body region are marked

in red, green and blue, respectively. (f) Result of the max oper-

ation. The head-shoulder features win 46.1% of the competition,

much more than the other two region features in green and blue.

The fusion unit has two main processes. 1) The fea-

ture competition and selection process is conducted by an

element-wise maximization operation. Feature entries with

larger value can be preserved and smaller features are re-

moved. 2) The feature transformation process is conducted

by a inner product layer, so that the transformed result can

be used for later fusion units.

Similar to the Feature Extraction Network where fea-

tures of different body sub-regions are pooled out from

different stages, the feature vectors of different body sub-

regions are also merged in different stages based on their

semantic levels and relationships. A tree-structured fusion

strategy is proposed and features representing micro body

sub-regions are merged in early stages and some macro fea-

tures are merged in later stages.

As shown in Fig. 3, in the first stage, the features of the

two leg regions, and the features of the two arm regions, are

merged by two fusion units, separately. Afterwards, the two

fusion results of the first stage are further merged with lower

body features and upper body features, separately. Then,

a fusion unit takes the two fusion results of the previous

stage, together with the feature vector of the head-shoulder

region as input and compute the merged feature vector of

the whole body. Finally, the merged feature vector are con-

catenated with the feature vector of the full image, and are

then transformed to the final 256-dimensional feature.

An example is shown in Fig. 5 to demonstrate the feature

competition and fusion strategy based on the element-wise

max operation. In this example, we focus on the fusion unit

which takes three feature vectors, i.e. the head-shoulder fea-

tures (red), the upper body features (green), and the lower

body features (blue), as input and get the max responses.

Even it is the same white color, wearing a white veil is much

more distinguishable than wearing white clothes. Thus the

head-shoulder features win much more competition in the

max operation and 46.1% nodes are preserved in the output

feature vector.
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(a) (c) (d)(b)

(e) (g) (h)(f)

Figure 6. Eight datasets evaluated in our paper, including existing

datasets, i.e. (a) CUHK03 [13], (b) CUHK01 [12], (c) PRID [10],

(d) VIPeR [9], (e) 3DPeS [3], (f) i-LIDS [34], (g) Market-1501

[33], and (h) our proposed SenseReID testing dataset.

4.3. Training Details

A progressive strategy is adopted to train the Spindle

Net, i.e. first training the Feature Extraction Net (FEN) and

then the Feature Fusion Net (FFN). Model parameters are

random initialized without pre-training.

The FEN is trained in the following three steps. 1) The

full image branch is trained by giving supervision to the

feature of the full image region. 2) Fixing the parameters in

FEN-C1, the following three branches corresponding to the

three macro sub-regions are trained by giving supervision to

the three macro region features. 3) Fixing the parameters in

FEN-C1 and FEN-C2, the last four branches corresponding

to the four micro sub-regions are trained by giving supervi-

sion to the four micro region features. Then, the FFN are

trained by giving supervision to the final feature vector.

When training FEN and FFN, existing ReID datasets are

used and Softmax classification loss is adopted. The fea-

ture vector are transformed to a probability vector before

computing the loss function.

5. Experiments

5.1. Datasets

To evaluate the performance of the proposed Spindle

Net, seven existing standard person ReID datasets are evalu-

ated in our experiments, including CUHK03 [13], CUHK01

[12], PRID [10], VIPeR [9], 3DPeS [3], i-LIDS [34], and

Market-1501 [33]. In order to make fair comparison, we

follow the standard data separation strategy as [33] for the

Market-1501 dataset. For the other datasets, we follow the

same settings as JSTL [29] to generate the training, vali-

dation, and test probe/gallery samples. The CUHK02 [12]

Dataset #ID #Trn/Val img #Prb/Gal ID #Prb/Gal img

CUHK03 [13] 1467 21012/5252 100/100 952/976

CUHK01 [12] 971 1552/388 485/485 972/972

PRID [10] 385 2997/749 100/649 100/649

VIPeR [9] 632 506/126 316/316 316/316

3DPeS [3] 193 420/104 96/96 246/316

i-LIDS [34] 119 194/48 60/60 98/130

Market-1501 [33] 1501 10348/2588 750/750 3368/15913

SenseReID 1717 0/0 522/1717 1040/3388

Table 1. The details of the eight datasets evaluated in our exper-

iment. The number of train/validation images, together with the

number of query/gallery identities and images are listed.

and PSDB [30] datasets are also used for training but not

evaluated. In our implementation, the training and valida-

tion identities have no overlap with the test ones for all the

datasets. Similar to JSTL [29], we merge all the training

samples from these datasets to train a single ReID model

which can be directly evaluated on all the testing datasets.

Besides existing datasets, the SenseReID dataset is pro-

posed to evaluate the generalization ability of the trained

ReID model. Unlike traditional datasets which are captured

on campus or from some designed camera views, our pro-

posed data are captured from twelve real world surveillance

cameras. The proposed dataset contains no training data

and is for testing purpose only. For the persons captured

by more than one camera, the images of this individual are

separated into the probe set and the gallery set according

to the camera index. The probe set contains 522 identities,

while the gallery set contains 1717 identities by including

1195 additional identities captured by only one camera. Se-

lected samples of these datasets are shown in Fig. 6 and the

statistical information of the datasets are listed in Table 1.

5.2. Comparison Results

The proposed Spindle Net is compared with several

state-of-the-art ReID approaches in recent two years, in-

cluding the metric learning method WARCA-χ2 [11], the

null space semi-supervised learning method NFST [32], the

deep neural network PersonNet [28], the Siamese CNN

with learnable gate S-CNN [25], the multi-domain CNN

JSTL [29], the Joint Re-id method [1], the temporal adap-

tation model TMA [16], the hierarchical Gaussian model

GOG+XQDA [17], the similarity learning method SCSP

[5], the deep attribute model SSDAL+XQDA [22], the hor-

izontal occurrence model LOMO-XQDA [14], the logistic

metric learning model MLAPG [15], the triplet loss model

TCP [7], the kernel-based distance learning approach MFA

[31], the structured learning model CMC-top [19], and the

bag of words model BoW-best [33]. The commonly used

cumulative match curve (CMC) metric is adopted to quan-

titatively evaluate all the methods. One sample is random

selected from duplicate gallery labels for all the evaluations.
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CUHK03 Top-1 Top-5 Top-10 Top-20

WARCA-χ2 [11] 78.4 94.6 - -

NFST [32] 62.6 90.1 94.8 98.1

PersonNet [28] 64.8 89.4 94.9 98.2

S-CNN [25] 61.8 80.9 88.3 -

JSTL [29] 75.3 - - -

Spindle (Ours) 88.5 97.8 98.6 99.2

CUHK01 Top-1 Top-5 Top-10 Top-20

NFST [32] 69.1 86.9 91.8 95.4

PersonNet [28] 71.1 90.1 95.0 98.1

TCP [7] 53.7 84.3 91.0 96.3

JSTL [29] 66.6 - - -

Joint Re-id [1] 65.0 - - -

Spindle (Ours) 79.9 94.4 97.1 98.6

PRID Top-1 Top-5 Top-10 Top-20

TMA [16] 54.2 73.8 83.1 90.2

NFST [32] 40.9 64.7 73.2 81.0

GOG+XQDA [17] 68.4 88.8 94.5 97.8

JSTL [29] 64.0 - - -

Spindle (Ours) 67.0 89.0 89.0 92.0

VIPeR Top-1 Top-5 Top-10 Top-20

TMA [16] 48.2 - 87.7 95.5

NFST [32] 51.2 82.1 90.5 96.0

SCSP [5] 53.5 82.6 91.5 96.7

SSDAL+XQDA [22] 43.5 71.8 81.5 89.0

LOMO+XQDA [14] 40.0 - 80.5 91.1

MLAPG [15] 40.7 82.3 - 92.4

GOG+XQDA [17] 49.7 79.7 88.7 94.5

TCP [7] 47.8 74.7 84.8 91.1

Spindle (Ours) 53.8 74.1 83.2 92.1

3DPeS Top-1 Top-5 Top-10 Top-20

WARCA-χ2 [11] 51.9 75.6 - -

SCSP [5] 57.3 79.0 - 91.5

MFA [31] 41.8 65.5 75.7 85.2

JSTL [29] 56.0 - - -

Spindle (Ours) 62.1 83.4 90.5 95.7

i-LIDS Top-1 Top-5 Top-10 Top-20

WARCA-χ2 [11] 36.6 66.1 - -

CMC-top [19] 50.3 - - -

MFA [31] 32.1 58.8 72.2 85.9

TCP [7] 60.4 82.7 90.7 97.8

JSTL [29] 64.6 - - -

Spindle (Ours) 66.3 86.6 91.8 95.3

Market-1501 Top-1 Top-5 Top-10 Top-20

NFST [32] 55.4 - - -

PersonNet [28] 48.2 - - -

S-CNN [25] 65.9 - - -

BoW-best [33] 44.4 63.9 72.2 79.0

Spindle (Ours) 76.9 91.5 94.6 96.7

Table 2. Experimental results of the proposed Spindle Net and

other comparisons on seven existing datasets. The CMC Top-1-

5-10-20 accuracies are reported. The Top-1 accuracies of two best

performing approaches are marked in bold. Due to space limi-

tation, only some best performing methods are shown in the two

tables.

SenseReID dataset Top-1 Top-5 Top-10 Top-20

JSTL [29] 23.0 34.8 40.6 46.3

BoW-best [33] 22.4 - - -

Spindle (Ours) 34.6 52.7 59.9 66.7

Table 3. Experimental results of the proposed Spindle Net and

other comparisons on our proposed SenseReID dataset. The CMC

Top-1-5-10-20 accuracies are reported.

The testing procedure is repeated for 100 times and the

average results are reported in Tables 2 and 3. From Ta-

ble 2, we can observe that the proposed Spindle Net can

achieve the best Top-1 accuracy on most existing ReID

datasets. Especially, our model can achieve an 88.5 Top-

1 accuracy on the CUHK03 dataset [13] , which is 10.1%

higher than the best compared method [11]. Moreover, our

model can achieve an Top-1 accuracy of 76.9% on the chal-

lenging Market-1501 dataset [33] , 11.0% better than the

best comparison [25]. It is because our Spindle Net takes

the body landmark information into consideration and re-

gion features are used in the ReID pipeline. Moreover, the

feature selection and fusion strategy also helps obtain good

compact features.

For the PRID dataset [10], our model achieves slightly

lower Top-1 accuracy than GOG+XQDA [17]. It is also

reasonable because there is only one trained model directly

evaluated on all the datasets. The strong generalization abil-

ity may hurt the performance on one specific dataset. In

order to further demonstrate the generalization ability, we

test our model on the SenseReID dataset without fine-tuning

and the results are listed in Table 3. We can observe that our

model can get much better accuracy than the comparisons.

6. Investigations on Spindle Net

In this section, the proposed Spindle Net is thoroughly

investigated, in terms of the Feature Extraction Network

(FEN) and the Feature Fusion Network (FFN). The investi-

gations are evaluated on the largest and the most challeng-

ing Market-1501 dataset [33].

6.1. Investigations on FEN

We first investigate the best position for pooling out the

macro region features and the micro region features. There

are three potential pooling positions, i.e. after FEN-C1,

after FEN-C2, and after FEN-C3. For each position, the

pooled macro and micro features are tested and the per-

formance are reported in Fig. 7. We can observe that the

feature maps generated by FEN-C1 are best for pooling

out macro features while micro features should be pooled

out from the FEN-C2 features. The macro regions contain

more complex identity information, thus the macro features

should be pooled out in earlier stage to have more indepen-

dent learnable parameters.
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Figure 7. The evaluation performance of different pooling posi-

tions for the macro region features (left) and the micro region fea-

tures (right) on Market-1501 [33] datasets.

Market-1501 Top-1 Top-5 Top-10 Top-20

(a) Full only 72.1 88.9 92.9 95.6

(b)

Full+FEN-C1/C1 74.3 90.5 94.1 96.5

Full+FEN-C2/C2 73.1 90.0 93.8 96.2

Full+FEN-C3/C3 67.8 85.9 90.6 93.9

(c)

Full+FEN-C1/C2 74.7 90.8 94.3 96.6

Full+FEN-C1/C3 73.7 90.0 93.7 96.2

Full+FEN-C2/C3 72.5 89.3 93.2 95.8

(d)

Full+FEN-C2/C1 74.0 90.5 94.1 96.5

Full+FEN-C3/C1 72.2 89.4 93.3 95.9

Full+FEN-C3/C2 72.0 89.2 93.2 95.9

Table 4. The evaluation performance of different combinations

of the full image features and the macro/micro features extracted

from different stages on Market-1501 [33] datasets. FEN-C1/C2

means the macro features are pooled from FEN-C1 and the micro

features are pooled from FEN-C2.

Besides the effectiveness of the pooled features, the com-

plementary property is also very important for selecting

good feature combinations. Experiments are also conducted

by joint testing different combination of the full image fea-

ture, the macro features, and the micro features. From

the results in Table 4, we found that the combination of

Full+FEN-C1/C2 achieves the best accuracies. Even with-

out the Feature Fusion Network, the Top-1 accuracy can be

improved by 2.6% to 74.7% by introducing the macro and

micro region features compared with the results of Table 4

(a). Moreover, compared with the results in Table 4 (d), the

better performance of (c) also demonstrates that macro fea-

tures should be pooled out earlier than the micro features.

6.2. Investigations on FFN

There are two key factors of the proposed FFN, i.e., the

tree fusion structure and the feature competition strategy.

For the tree fusion structure, the results of using only one

region feature are evaluated and listed in Table 5. From the

results, we can observe that the full image feature can gen-

erally achieve better accuracies than the macro region fea-

tures, while the macro region features are better than those

micro ones. Thus the tree-structured fusion technology is

adopted and better features are merged in later stages. On

the other hand, such fusion structure is also consistent with

Market-1501 Top-1 Top-5 Top-10 Top-20

Full 72.1 88.9 92.9 95.6

Head and Shoulder 41.0 64.5 74.1 82.7

Upper Body 59.5 81.8 88.2 92.8

Lower Body 61.3 81.9 87.6 91.9

Right Arm 33.0 55.3 65.4 75.2

Left Arm 33.3 55.7 65.7 75.1

Right Leg 49.7 72.7 80.4 86.5

Left Leg 49.1 72.3 80.0 86.5

Table 5. The testing performance of each SINGLE feature compo-

nent on the Market-1501 [33] datasets.

Market-1501 Top-1 Top-5 Top-10 Top-20

Linear + Concat. 72.8 89.1 93.0 95.6

Linear + Avg. 62.7 82.0 87.3 91.4

Linear + Max. 62.8 82.0 87.2 91.3

i-Tree + Concat. 66.5 86.4 91.3 94.7

i-Tree + Avg. 68.6 87.4 91.9 95.0

i-Tree + Max. 41.9 66.4 76.2 84.1

Tree + Concat. 67.1 84.7 88.9 92.1

Tree + Avg. 74.3 90.4 93.9 96.3

Tree + Max. (Ours) 76.3 91.1 94.5 96.5

Fine-tune (Ours) 76.9 91.4 94.6 96.7

Table 6. Comparison results of different fusion structures and com-

petition strategies on Market-1501 [33] datasets.

the human body structure. The limb features are merged

first while some higher level information are merged later.

The proposed fusion structure (Tree) is compared with

some other possible ones, including the Linear structure

(features are merged one by one) and the inverse tree (i-

Tree) structure (macro features are merged first). We also

compare the proposed competition strategy (Max.) with

some baselines including direct concatenation (Concat.),

and the element-wise average (Avg.). The performance of

different fusion structures and competition strategies are re-

ported in Table 6. The proposed FFN (Tree+Max.) achieves

the best performance. Global fine-tuning the whole Spindle

Net can further improve the performance.

7. Conclusion

In this paper, a novel Spindle Net is proposed for person

ReID. Features of different body regions are separated by

a multi-stage ROI pooling network and merged by a tree-

structured fusion network. We show that the multi-level

body features are informative to help align body regions

across different images, and capture discriminative details

of individuals. Strong capacity of the proposed feature com-

petition and fusion network is also verified. State of the art

performance can be achieved on multiple datasets and the

robustness of the proposed Spindle Net is demonstrated on

the proposed SenseReID dataset without fine-tuning.
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